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ABSTRACT

We have studied the structure and the formation and migration energies of single kinks in ¥2(111) screw
dislocations in body-centered cubic iron, by performing static calculations using the Ackland-Mendelev
empirical potential, which correctly accounts for the non-degenerate core structure. The methodology for
constructing simulation cells with fully periodic boundary conditions based on the quadrupolar arrange-
ment of dislocation dipoles, with a single kink on each dislocation line is presented. The two types of
kinks - left and right - are found to have similar widths, namely ~20 Burgers vectors. The convergences
of the formation energies with cell-size along the dislocation line, as well as with the distance between
the two dislocations are investigated. A dependence proportional to the inverse of the distance between
kinks along the dislocation line is found when kinks overlap. The formation energies of the left and right
kinks are significantly different: 0.57 and 0.08 eV, respectively. The Peierls potentials of the second kind
are evaluated with the drag method: the energy barriers are found to be lower than 0.1 meV for both

kinks.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Screw dislocation glide is obtained by two processes at finite
temperature: the nucleation of kink-pairs within a straight disloca-
tion lying in a single Peierls valley, and the propagation of the kinks
along the dislocation line. These phenomena have been recently
investigated using atomistic dynamic simulations in body-cen-
tered cubic (bcc) iron [1,2]. In the present paper, empirical poten-
tial calculations are performed to characterize the static properties
of the kinked (111) screw dislocations. This study is based on the
Ackland-Mendelev empirical potential [3], which was shown to
correctly reproduce the non-degenerate core structure predicted
by density functional theory (DFT) calculations in iron, among
the two possible core structures [2,4-6]. This paper focuses on
the methodology for setting up fully periodic simulation cells to
perform accurate energy calculations on single kinks.

2. Methodology

For this study, we have chosen to consider a dislocation dipole
in a periodic supercell [7]. The cartesian axes, x, y and z, are taken,
respectively, along the [121], [101] and [111] directions. The Bur-
gers vectors are +%[111]. The first two cell vectors, C; and C,, are
chosen to generate a square-like periodic array of dislocation quad-
rupoles in the (x,y) plane [8]. Following Ref. [7], pre-tilt compo-
nents in the z direction are added to C; and C, to accommodate
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for the plastic strain generated by the straight dislocation dipole.
For a straight dislocation the third cell vector, Cs, is taken along z.

Let us now consider how to deal with single kinks. There are
two families of kinks for a (111) screw dislocation in a bcc lattice,
referred to as left and right kinks [9]. They can be distinguished by
looking at their effect on the [111] row of atoms which is next to
both dislocation positions, as illustrated in Fig. 1(a) and (b). The
two parts of the atomic rows get either closer to each other by b/
3, or separated by the same amount; for this reason the two types
of kinks are also called interstitial and vacancy type [1]. It is
straightforward to set up a simulation cell containing either a
kink-pair, i.e. two segments of opposite-sign edge dislocations, or
three kinks of the same sign [10]: the double-kink satisfies the
periodicity along the [111] direction while, in the three kink con-
figuration, a =[12 1] component, corresponding to the sum of the
three kink vectors is added to Cs. The difficulty for adding a single
kink per dislocation line arises from the fact that the kink vector
+1/3[121] is not a periodic vector of the perfect crystal. Noticing
that +1/3[121] #1/6[111] is a periodicity vector, the solution
for overcoming this difficulty is to essentially remove or add one
(111) layer of atoms (or more generally the atoms contained with-
in the sub-cell formed by C;, C; and 1/6[111]). The component
+1/3[121] ¥ 1/6[111] is then simply added to Cs, as illustrated
in Fig. 2. The tilt components have been deduced in previous stud-
ies from elasticity calculations for the perfect dislocation within
the quadrupolar arrangement [5,8] and are summarized in Table
1, along with the components that are deduced from the bcc geom-
etry and necessary to apply periodic boundary conditions to the
cell with a single kink on each dislocation. A perfect agreement is
obtained between the formation energies computed from either
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Fig. 1. Schematic representation of the right (or vacancy) kink (a) and the left (or
interstitial) kink (b) in a (111) screw dislocation in the bcc lattice before relaxation;
their respective effects are shown on the most affected [111] row of atoms,
represented by black and white spheres. The distance between the upper and lower
parts of the row is either increased or decreased by b/3. The atoms of the two
neighbouring [111] rows in the same (101) plane (in grey) are represented at their
positions for a straight dislocation at the halfway position.

the single-kink simulation cells or the cells with three single-kicks
or a kick-pair on each dislocation. The present construction is
therefore validated. It has the major advantage of reducing the
number of atoms necessary for the computation of single-kink
properties by a factor of three. The two dislocations have opposite
Burgers vectors, and it can be shown that adding the same kink
vector to both dislocation lines yields the same type of kink (either
left or right) for both dislocations. The properties of a given type of
kink can therefore be deduced separately. The formation energy of
a single kink is calculated as the difference between the energy of a
kinked screw-dislocation and the energy normalized to the same
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Table 1

Components of the cell vectors, Cj, C;, C5, C and G, for the different types of cells
used for the bulk configuration, and for both perfect dislocation and kinked
dislocation. The x and z components are respectively in units of v6/3a and
b=+3/2a, where a is the cubic lattice parameter. C =0; |G}~ |C}|=
|C%|/2v/a? + b*; n is an integer chosen such that C¥/(v/6a/3) is an odd integer; x is
along the [121] direction and z is along the [111] direction.

G a G G G
Bulk

3n-1 +1/3 -1/3 0 0

3n 0 0 0 0
3n+1 -1/3 +1/3 0 0
Dislocation

3n-1 +1/3 +1/6 0 0

3n 0 +1/2 0 0
3n+1 -1/3 -1/6 0 0
Right kink

3n-1 +1/3 +1/6 +1 -1/3
3n 0 +1/2 +1 -1/3
3n+1 -1/3 -1/6 +1 -1/3
Left kink

3n-1 +1/3 +1/6 -1 -2/3
3n 0 +1/2 -1 -2/3
3n+1 -1/3 -1/6 -1 -2/3

number of atoms of a straight dislocation lying in a single Peierls
valley.

Note that since the dislocation core is non-degenerate with Ack-
land-Mendelev potential - in agreement with DFT calculations -
each type of kink (right or left) has only one possible geometry.
This contrasts with previous atomistic studies on kinks in bcc met-
als, which were based on empirical potentials yielding degenerate
cores. In the latter case there are six non equivalent kinks and two
so-called flip defects [11-16]. From this point of view, the present
results are expected to be much more realistic. However some lim-
itations of the Ackland-Mendelev potential must be kept in mind:
compared to DFT calculations, it underestimates the Peierls energy
by at least a factor of two, and it yields a double-hump Peierls po-
tential instead of a single hump one [5]. The present results can
therefore not be considered as quantitative predictions, and in par-
ticular the kink width is likely to be largely overestimated. A more
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Fig. 2. Construction of periodic supercells for calculations with a single kink per dislocation line. (a) Atomistic view showing the components added to the C cell vector to
satisfy the crystalline and defect periodicity. R refers to right and L to left. Atoms depicted in the same color belong to equivalent {111} planes. (b) Projection on the (x,z)
plane of the unit cell and cell vectors compared to the cell for straight dislocation calculation (dashed line).
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advanced type of potential, which accounts for magnetic effects,
has been recently proposed by Dudarev and Derlet [17]. However
tests performed on the existing parameterization for Fe, revealed
- at variance with DFT calculations - a degenerate core structure
and a shoulder in the generalized stacking fault energy surfaces.
For these reasons this potential is less appropriate than the Ack-
land-Mendelev potential for dislocation studies. The Ackland-
Mendelev potential does not account directly for magnetic effects,
but changes in the local magnetic moment are expected to be small
for screw dislocations because the coordination and bond length
are less affected than for other defects such as vacancies, intersti-
tials or surfaces.

Information on the structure of the kinks can be obtained from
the position of the dislocation in the cell for a given value of z. We
have defined a cost function based on the Volterra elastic field to
determine the center (xq,y;) and (x,y») of the two dislocations
for each {111} plane:

n

FOa,y1.%2,y5) = > (02 = 8%2i(x1,1,%2,32))°, (1)

i=1

where 6°z;(x1,y,,X2,Y,) is the isotropic elastic displacement field of
atom i due to the dislocation dipole positioned at (x1,y;) and (x2,y2)
and éz; is the actual atomic displacement.

The calculations have been performed using the molecular
dynamics code developed by ].P. Crocombette (CEA/Saclay, France)
and co-workers. Relaxations are performed using the conjugate gra-
dient algorithm. The cell sizes range from 4b to 100b, where b is the
Burgers vector (b = 2.47 A), in the C; direction, and from 135 atoms/
b to 1215 atoms/b for the size in the C; and G, directions.

3. Results and discussion

The kinks are initially introduced as sharp kinks. Their struc-
tures after relaxation, as obtained from Eq. (1), are represented in
Fig. 3. The two types of kinks are found to have the same width,
namely w = 20b as defined, e.g. in Ref. [18]. This value is in very
good agreement with the value of 19b proposed from an analysis
of flow stress dependence on temperature and strain rates in high
purity a-iron, below 250 K [19].

The convergence of the formation energy with cell-size along
the dislocation line has been studied in the range from 4b to
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Fig. 3. Shape of the left (full line) and right (dashed line) kinks after relaxation in a
cell containing 273 atoms/b in the [111] direction and 100b along the dislocation
line. The positions of the dislocation are evaluated from Eq. (1), in each {111} plane
along the z-axis. The displacement in the y direction is normalized to the distance
between two Peierls valleys, i.e. v/6/3a. The construction used to determine the
kink width, w, is shown.

100b (Fig. 4). From a representation as function of the inverse of
the cell-size (Fig. 5), two regimes are identified: above 40b, the for-
mation energy of the single kink has a constant value, and below
20b, it has a perfect linear dependence on the inverse of the dis-
tance between the kink and its periodic image along the disloca-
tion line. Note that the slope is the same for the two types of
kinks. Below ~40b, it is clear from Fig. 3 that the kink has not
reached its equilibrium width. In this regime of ‘overlapping kinks’,
it can be shown that the change in line length (compared to the
perfect dislocation) is proportional to the inverse of the cell-size.
In a line tension model, the energy will therefore also vary as the
inverse of cell-size, as observed here. Note however that the inter-
cept has a finite value - at least for the left kink - such that another
contribution to the energy should be added to the line tension. For
cell sizes of 40b or more, the kink has reached its equilibrium
width, which can be seen as the value minimizing the sum of the
line tension energy and the Peierls contribution [18]. The fact that
the energy is perfectly constant above 40b shows that the interac-
tion between a kink and its images is negligible. The extrapolation
of the linear dependence provides an upper bound value for the
formation energy. A similar linear dependence was observed
previously for a slightly different geometry and for other types of
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Fig. 4. Kink formation energies: convergence as a function of the cell-size along the
[111] direction and number of atoms per Burgers vector.
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Fig. 5. Same as Fig. 3 plotted as function of inverse of cell-size in the [111]
direction, represented for cells with 273 atoms/b. The horizontal dashed lines
represent the constant values reached for cells larger than ~40b.
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Fig. 6. Peierls potential of the second kind for the left and right kinks, calculated
using the drag method in a cell containing 273 atoms/b and with 60b along the
dislocation line.

dislocations [20]. However the constant value regime was not
reached for the investigated cell sizes.

We have also investigated the variation of the formation ener-
gies with the distance between the dislocations, i.e. with the num-
ber of atoms per {111} plane. The change in formation energy
when using cells containing from 135 to 1215 atoms/b, is found
to be negligible for the right kink and less than 0.1 eV for the left
kink, as shown in Fig. 4.

As a result, the values obtained for the formation energies for
the right and left kinks are, respectively, 0.08 and 0.57 eV. The
two types of kinks therefore have quite different formation ener-
gies. Their sum gives formation energy for a double-kink. The cal-
culated value, 0.65 eV, is in very good agreement with the value
deduced from flow stress measurements, i.e. 0.6 eV [19].

Finally, we have computed the Peierls potential for the side mo-
tion of the single kink along the dislocation line, i.e. the Peierls po-
tential of the second kind for the two types of kinks, using the drag
method [21]. The constraint used in the drag method consists in
allowing the atomic positions relative to the center of mass to relax
only in the hyperplane perpendicular to the vector joining the ini-
tial to the final position. The energy barriers are found to be very
small, less than 0.1 meV (see Fig. 6), suggesting that both types
of kink will propagate athermally along the dislocation line.

4. Conclusion

We have detailed the set up of fully periodic simulation cells to
perform accurate calculations on %(111) screw dislocations in bcc

iron using the quadrupolar distribution of dislocation dipoles, for
the two types of kinks, left and right. We have described the pro-
cedure for introducing a single kink while satisfying the periodicity
along the dislocation line, i.e. by removing/adding a slice of thick-
ness b/3 of atoms and adding components to the cell vector along
the dislocation line. This methodology was applied using the Ack-
land-Mendelev potential for iron. Despite the limitations of this
potential concerning the description of the Peierls potential com-
pared to DFT calculations, a good agreement is obtained with val-
ues deduced from experiments for the kink width, w = 20b, and the
kink-pair formation energy, 0.65 eV. One of the challenges for the
future is to perform similar calculations using first principles elec-
tronic structure calculation techniques in order to have more
quantitative results. This has been recently achieved in Si [22]
and the present results on the convergence with cell-size (parallel
and perpendicular to the dislocation line) provide useful informa-
tion for addressing the case of transition metals.
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